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Large-eddy simulations (LESs) of obstacle-free wakes, in a channel like geometry with an homogeneous
transverse direction, are carried out in order to investigate the influence of confinement on turbulent
wakes. The numerical solver makes use of a multi-domain Fourier–Chebyshev spectral method and the
LES capability is implemented through a spectral vanishing viscosity technique. A top hat like velocity
profile is imposed at the inlet and both no slip and free slip conditions are considered at the confining
walls. Prescribing the velocity ratio, defined as the ratio of the velocity gap to the mean velocity, we study
the influence of confinement on such flows at the Reynolds number Re = 5000. Several quantities are ana-
lyzed, as one-dimensional velocity spectra, third order-velocity structure function, turbulent kinetic
energy and its dissipation rate. It turns out that for obstacle-free wakes confinement increases the inten-
sity of turbulence and its three-dimensional feature, as e.g. pointed out by Lumley diagrams, in agree-
ment with numerical and experimental results obtained for confined cylinder wake flows. Finally,
comparing no slip simulation results with free slip ones, we also point out the role of boundary layers.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Influence of confinement on wake flows has now a rather long
history, starting with Gill [9], who has shown that recessing the
central tube of a coaxial injector of rocket engines improves the
mixing of the two streams. The mechanisms which take place on
coaxial jets are however complex, so that no explanations were gi-
ven to this phenomenon for more than two decades. Rehab et al.
[29] showed, for an unrecessed injector, that a recirculation bubble
may appear in the middle of coaxial jets, just like in the wake past
an obstacle. Through experiments conducted in a cryogenic test
facility [11], it was also shown that the recess enhances the spiral
or flapping instability which is characteristic of wakes. Finally,
Juniper and Candel [13] related the destabilizing influence of a re-
cess to the enhancement of the instability of the wake in the re-
cessed region of the flow.

From the results of Juniper and Candel [13], numerous studies
with aim to understand the influence of confinement on obstacle-
free wake flows were undertaken on the basis of both theoretical
studies [12,28,4] and numerical simulations [32,5,3]. The former
ones have confirmed the destabilizing influence of the confinement,
in particular when the blockage is moderate, while the latter have gi-
ven contrasting results depending on the boundary conditions and
the value of Reynolds number. In Biancofiore et al. [5] and Biancofi-
ore [3], the influence of confinement on laminar wakes at medium
ll rights reserved.

squetti).
Reynolds number, i.e. Re = 100 and Re = 500, was investigated when
imposing a top hat velocity profile at the inlet of a two-dimensional
channel like geometry. For Re = 100, a medium confinement pro-
motes the instability, especially if free slip conditions are considered
at the walls. When no slip conditions are implemented, such a desta-
bilizing effect is damped, but persists. For Re = 500, more subtle phe-
nomena due to confinement take place, for both boundary
conditions. They take the form of a strong instability exhibiting a
vacillating wave front. In contrast to the previously cited results,
for 100 < Re < 400 and no slip conditions at the walls no destabiliza-
tion due to confinement is mentioned in Tammisola et al. [32]. How-
ever, only two values of the blockage are compared, which does not
allow to investigate extensively the effect of confinement.

Such results help to understand the physics of recessed coaxial
injectors, but it is worthwhile to ask what will be the influence of
the confinement in a more realistic situation involving a turbulent
wake flow. The quality of the mixing is indeed strongly connected
to the intensity of the turbulence. It is then of interest to analyze
the behaviour of the obstacle-free wake flows investigated in
Tammisola et al. [32] and Biancofiore et al. [5] when increasing
the Reynolds number, up to e.g. Re = 5000. Such high-Reynolds
number flows are however out of reach of direct numerical simula-
tions (DNSs), so that large-eddy simulations (LESs) are needed.
Since we plan to use a spectral Fourier–Chebyshev numerical meth-
od, stabilizing the computations by means of a spectral vanishing
viscosity (SVV) technique constitutes a LES approach of interest.
Following this SVV–LES approach, we can study how the behaviour
of a turbulent wake flow is modified when strengthening the
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confinement. Note that the present SVV–LES numerical method
was already used to compute cylinder/sphere wakes, thermally
stratified wakes or for the Ahmed’s body flow [26,22].

To the best of our knowledge, there are no experimental or
numerical studies concerned with obstacle-free turbulent wake
flows submitted to confinement, in contrast to several studies on
turbulent confined cylinder wakes. For 104 < Re < 107, experiments
on confined circular cylinder wakes described in Richter and Nau-
dascher [30] have shown that the confinement is destabilizing.
Using LES, similar results were obtained in Kim et al. [15] for con-
fined square cylinder wakes. In particular, these studies show that
both the turbulence intensity and the Strouhal number are en-
hanced as the confinement is increased. Earlier, in Bearman and
Zdravkovich [1] experiments were conducted for semi-confined
cylinder wakes at Re = 45,000. It turned out that adding a plate
close to the bluff body may regularize the vortex street for certain
values of confinement.

Following both previous theoretical analyzes and numerical
simulations, the present paper is devoted to confined turbulent
obstacle-free wakes. We focus on the flow generated by a top hat
velocity profile, with no slip or free slip conditions at the confining
walls, as previously analyzed in the laminar case both theoretically
[13,12] and numerically [32,3]. With respect to the two-dimen-
sional studies, an homogeneous direction completes the initial set-
ting. Despite its planar geometry, such a model is close to the
situation of a real confined wake exiting from a coaxial injector.
The outline of the paper is as follows: Section 2 briefly describes
the model and the numerical method; Section 3 goes into the de-
tails of the influence of the confinement on the turbulent proper-
ties of the wake flow; In Section 4, the influence of a free slip
boundary condition at the channel walls is considered, while Sec-
tion 5 focuses on the analysis of the 3D versus 2D nature of the tur-
bulent wake, depending on the confinement parameter. Finally,
conclusions are drawn in Section 6.
2. Model and numerical method

The flow is assumed to be governed by the incompressible Na-
vier–Stokes equations. The geometry is channel like and the trans-
verse direction is homogeneous. In the elongated streamwise
direction, the approximation in space makes use of a domain
0

U (y)

y

−h1

h1

2U1h1

U1
U2

U2h2

h1+h2(a)

−h1−h2

U2h2

Fig. 1. Schemas of the inlet velocity profile, using dimensioned values (a) and dimensio
correspond to each part of the flow.
decomposition technique. In each subdomain, the spatial approxi-
mation is based on a Galerkin Fourier – collocation Chebyshev
numerical method. The pressure is only defined at the inner grid-
points, so that (i) no boundary conditions are required for the pres-
sure and (ii) the discrete problem is well posed (no ‘‘pressure spu-
rious modes’’). The time scheme is based on an ‘‘Operator
Integration Factor’’ semi-Lagrangian method and a projection tech-
nique. Three steps are involved: (i) transport, (ii) diffusion and (iii)
projection. Diffusion (resp. transport) terms are handled implicitly
(resp. explicitly). In each subdomain, an efficient direct matrix
equation solver is used and the interface values are computed
using a Schur complement technique. The LES capability is imple-
mented through the use of a SVV technique, which consists of
introducing artificial viscosity in the high frequency range of the
spectral approximation. The code is vectorized and (weakly) parall-
elized (one subdomain/processor). Additional details may be found
in several papers, see e.g. Cousin and Pasquetti [8], Pasquetti [24],
and Minguez et al. [22] and references herein.

In Section 2.1, we first describe the numerical set up. For the
sake of completeness, we briefly describe the SVV–LES implemen-
tation, in Section 2.2, and provide details on the computation of the
dissipation rate of the turbulent kinetic energy in Appendix.

2.1. Numerical set-up

The geometry is channel like in x-streamwise and y-crossflow
directions, while the z-spanwise direction is homogeneous. At
the sidewalls, no slip (NS) or free slip (FS) conditions are consid-
ered. Correspondingly, later on in the text we speak of NS-flows
or FS-flows. At the inlet of the channel, one imposes a top hat
velocity profile, i.e. u = (U, 0,0), with U(y) as shown in Fig. 1. The in-
ner flow has velocity U1 and width of 2h1, while the outer ones
have U2 and h2. Using as reference scales the average velocity
Um = (U1 + U2)/2 and the half-width of the inner wake h1, we intro-
duce non-dimensional quantities, as depicted in Fig. 1. The dimen-
sionless parameters are then: the confinement ratio h = h2/h1, the
velocity ratio K = (U1 � U2)/(U1 + U2), and the Reynolds number
Re = (U1 + U2)h1/2m, where m is the kinematic viscosity. Note that
the inlet profile of Fig. 1 was already used in Biancofiore et al. [5]
and Biancofiore [3], for DNS of confined laminar wake flows.

In the present work, the velocity ratio K = �0.739 and the
Reynolds number Re = 5000 are prescribed and we analyze the
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Table 1
Channel flow Reynolds number ðReÞ, friction Reynolds number (Res), dimensionless
distance to the wall (dy) and distance in wall units (dy+) for the three confinements h.

h Re Res dy dy+

3 54780 1331 0.003552 1.18
1 20000 548 0.002192 0.60
0.7 14783 420 0.001863 0.46
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influence of the confinement parameter h for the three different
values: h = 3,h = 1 and h = 0.7. The computational domain is X =
(0, L) � (�H/2, H/2) � (�E/2, E/2), where L, H and E are the length,
the height and the thickness of the domain, respectively. The
length of the domain is L = 75, the thickness E is settled to four
times the inner wake, i.e. E = 8, and the height H varies with respect
to the confinement, i.e. H = 2(1 + h). Such values were already used
in Biancofiore et al. [5] in order to detect 3D structures in the flow.
We have generally used eight subdomains, and in each of them the
polynomial approximation degree in the x- and z-directions are
settled to Nx = 100 and Nz = 32 (64 grid points), respectively.
Depending on the height of the domain, we have used Ny � 100
for the polynomial approximation degree in the y-direction.

One important point is that the inflow profile U of Fig. 1 displays
a discontinuity at y = ±1. Since we are using a spectral method, in
order to avoid or at least weaken the Gibbs phenomenon, we use
a filtered entry profile. The inlet profile is thus regularized accord-
ing to:
eUi ¼
1
4
ðUi�1 þ 2Ui þ Uiþ1Þ; ð1Þ
where Ui (and eUi) are the values at the grid-points of the y-axis. In
the frame of a Fourier spectral approximation, it can be shown that
this smoothing in physical space is equivalent to a raised cosine fil-
tering. Note that once applied to the top hat profile, the filter
changes only the values at the grid-points next to y = ±1 and, if
NS-conditions are imposed, at the first inner grid-point close to
the confining walls. Another important point in the present compu-
tations is the requirement of soft outflow boundary conditions
(OBCs). To this end, we use a convective condition based on the
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Fig. 2. Chebyshev spectra and modulus of the Fourier spectrum of the streamwise veloci
(a) and (51.58, 0, 0) (b).
flowrate velocity U and a Lagrangian formulation. With n for the
time advancement index, at the outlet x = xout we thus enforce:

uðxout; tnþ1Þ ¼ uðxout � Uðtnþ1 � tnÞ; tnÞ: ð2Þ

Using a Lagrangian rather than an Eulerian formulation allows
to localize at best the influence of the OBC. Moreover, (i) with
the same goal we use in space a linear interpolation rather than
the Chebyshev x-interpolant and (ii) the streamwise outlet profile
is slightly adjusted to be consistent with the divergence free con-
straint, i.e. so that the outlet flowrate exactly equals the inlet one.

The initial condition u0(x, y, z) of the three-dimensional LES is
given by the final saturated state uf(x, y) of the corresponding 2D
simulations, i.e. same confinement and velocity ratio, obtained
for Re = 100 [3]. A random perturbation u0(x, y, z), of small ampli-
tude, typically 10�3, is added to accelerate the development of a
3D flow, so that

u0ðx; y; zÞ ¼ uf ðx; yÞ þ u0ðx; y; zÞ: ð3Þ
2.2. SVV–LES formulation

LES methodologies are generally based on the introduction of a
stabilizing viscous term resulting from a modeling of the sub-grid
stress (SGS) tensor, see e.g. Sagaut [31]. The celebrated Smagorin-
sky model makes use of a non-linear dissipation term proportional
to the Euclidean norm of the strain rate tensor. The SVV technique
also uses a dissipation term, but that introduces dissipation only in
the high frequency range of the spectral approximation. Especially,
this allows to preserve all smooth flows. The SVV technique differs
from the spectral viscosity approach [7], for which all scales are af-
fected and is, e.g. more in the spirit of Variational Multi-Scale
methods [10]. Note however that both the spectral viscosity (at
least in its native form) and the SVV stabilization techniques are
linear, whereas LES sub-grid scale models are generally non-linear.

The definition of the SVV stabilizing term VN is given according
to Maday et al. [21], who have resolved in the interval (�1, 1) the
inviscid 1D Burgers equation by means of the spectral Legendre
method. In this case, with N for the degree of the polynomial
approximation, we have

VN ¼ �N@xQ Nð@xuNÞ; ð4Þ
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ty as computed, for h = 1, from the x, y and z-axis issued from the points (23.58, 0, 0)



Table 2
Two point-correlations in z-direction, for several distances l 2 (0, E/2), of the
transverse components of the velocity, as computed for h = 1 at the points
(23.58, 0, 0) and (51.58, 0, 0).

u-comp.nl 0.375 1.000 1.625 2.375 3.000 3.625
v(x = 23.58) 0.4242 0.0539 0.0258 0.0203 0.0772 0.1010
w(x = 23.58) 0.3992 0.0321 0.0091 0.0059 0.0277 0.0276
v(x = 51.58) 0.3806 0.2972 0.2935 0.1631 0.1419 0.1404
w(x = 51.58) 0.5730 0.1820 0.0009 0.0764 0.0578 0.0094
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where uN is the numerical approximation of some exact solution u,
with �N a O(N�1) coefficient and QN for the ‘‘SVV operator’’. With Lk

for the Legendre polynomial of degree k, it is defined from:

Q N/ ¼
XN

k¼0

bQ k/̂kLk; 8/ such that / ¼
XN

k¼0

/̂kLk; ð5Þ

bQ k ¼ 0, if k 6mN and 0 < bQ k 6 1 if k > mN. As suggested in Maday
et al. [21], we use a smooth variation for the coefficients bQ k:

bQ k ¼ exp � N � k
mN � k

� �2
 !

; k > mN : ð6Þ
Fig. 3. Instantaneous modulus of the vorticity jxj in the central planes z = 0 (top) an
Such a definition of the SVV operator extends naturally to
the case of hierarchical basis, and so may be used as it stands
for the Fourier (SVV was first defined in this case) or Chebyshev
approximations. An extension of the initial definition of the SVV
operator, provided for the 1D Burgers equation, to the present
3D Navier–Stokes can be discussed, specially for complex geom-
etries, see Xu and Pasquetti [33]. As proposed in Pasquetti [24],
in our multidimensional framework the SVV vector term is
written:

VN ¼ r � �NQ NðruNÞ; ð7Þ

where �NQN is now a diagonal matrix operator, so that the SVV
stabilization applies independently in each direction. More pre-
cisely, with ui, Vi for the components of uN, VN and �NQN =
diag{�jQj}, where Qj is the 1D operator acting in j-direction, we
have

Vi ¼
X

j

@ jð�jQ j@ juiÞ: ð8Þ

In practice, it is of interest to combine the viscous and SVV sta-
bilizing terms to obtain:
d y = 0 (bottom) at t = 400 for (a, d) h = 3, (b, e) h = 1 and (c, f) h = 0.7; Re = 5000.
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X
j

ðm@j@jui þ @jð�jQ j@juiÞÞ ¼
X

j

ðm@jð1þ m�1�jQ jÞ@juiÞ

¼
X

j

m@ j
~@jui ð9Þ

with ~@j ¼ ð1þ m�1�jQ jÞ@j: ð10Þ

Thus, using the SVV stabilization technique simply requires to
set up SVV modified differential operators in the preprocessing
phase of the computation. Consequently, there is no computational
time overhead during the simulation.

Turbulent kinetic energy profiles and the corresponding dissi-
pation rates are presented in the present paper. As well known,
computations of the turbulent kinetic energy from LES simulations
are generally satisfactory, because the energy associated to the
small scale may be neglected. On the contrary, the computation
of the corresponding dissipation rate would fail if a standard for-
mulation was used, since in LES the dissipation does not result
from viscous effects but from subgrid effects. This limitation may
be overcome in the present SVV–LES approach, as explained in
the appendix, and dissipation rates can be trustfully estimated.

Concerning the SVV parameters we proceed as suggested in Pas-
quetti [23], i.e. we try to decrease the SVV stabilizing terms. Our
choice for the threshold frequency was mN ¼

ffiffiffiffi
N
p

, while mN = N/2,
which is, e.g. used in Karamanos and Karniadakis [14], was not
found sufficiently stabilizing. For the amplitude we have used
�N = 1/N, except for h = 1 and FS conditions, where we used �N = 2/N.
10−6
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3. Confined turbulent wakes with no-slip conditions at the
walls

In this section we investigate the influence of the confinement
on several properties of the turbulence, at Re = 5000, using the
Table 3
Reynolds and Strouhal numbers for the three confinements, using (i) the reference
quantities introduced in the present study and (ii) those usually used for cylinder
wakes.

h Re St Rec Stc

3 5000 0.280 13695 0.409
1 5000 0.240 10000 0.480
0.7 5000 0.210 8696 0.483
inflow profile described in Section 2.1 and with NS conditions at
the walls, y = ±(1 + h). Statistical quantities as mean velocity pro-
files, turbulent kinetic energy and dissipation rate have been calcu-
lated once the transient state due to the initial random
perturbation has left the domain and the turbulent flow is fully
developed, i.e. in practice for 100 < t 6 tf, where the final time of
computations is generally tf = 400. Simulations have been carried
out on the NEC SX8 computer of the IDRIS center or on the cluster
of the Mésocentre SIGAMM, located at the ‘‘Observatoire de la Côte
Azur’’. On a NEC SX8 parallel–vectorial super computer, each sim-
ulation requires about 500 CPU hours.
3.1. Computational grid

Before going into the details of our results we give here some a
priori and a posteriori justifications of our SVV–LES.
10−1 100
10−8

10−7

Δt

Fig. 6. Absolute value of the third order structure function S3 versus time shift Dt
for v(x = 51.85, y = 0), for h = 3 (black line), h = 1 (dark gray) and h = 0.7 (light gray).
Continuous lines depict negative values of S3 and dashed lines depict positive
values. Thin lines represent the slopes 1 (continuous) and 3 (dashed).
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We first use the fact that the considered grid is similar to the
one required for DNS of the same flow but at the lower Reynolds
number Re = 500, see Biancofiore et al. [5]. On the basis of Kol-
mogorov theory one can then deduce that a DNS, at Re = 5000,
would require a refinement of the mesh in each spatial direction
of 103/4 � 5.62. This fully justifies the use of LES: Such a rather poor
refinement in each direction implies in the space–time domain a
refinement of 103, and a much greater ratio in computational
times, say at least 106. LES is thus required and moreover fully jus-
tified, because the value of 5.62 is sufficiently low to guarantee
that the maximum frequency representable by the grid falls in
the inertial range. Note that the present reasoning strongly relies
on the use of a high order spectral method, so that numerical dis-
sipation is negligible.

Another issue concerning LES is to know if ‘‘wall modeling’’ is
required. In order to use some well established results, obtained
from DNS or experiments, we consider the flow that will be recov-
ered far downstream, i.e. the classical channel flow. To this end let
us introduce the Reynolds number Re based on the flowrate
y

um

(a)
x = 4

y

x = 16

um

(b

(c) (

Fig. 7. Mean streamwise velocity profile um(x, y) versus the crossflow direction y for h =
x = 4, (b) x = 8, (c) x = 16 and (d) x = 64.
velocity U ¼ ðh1U1 þ h2U2Þ=ðh1 þ h2Þ and on the channel height
2(h1 + h2):

Re ¼ ðU1h1 þ U2h2Þ2
m

: ð11Þ

One easily checks that:

Re
2Re
¼ 1þKþ hð1�KÞ: ð12Þ

In order to determine the friction Reynolds number Res =
(h1 + h2)/dm, where dm is the viscous lengthscale, one uses the fact
that a good approximation of Res with respect to Re is
Res � 0:09Re0:88, see Pope [27] and references herein. Table 1
shows, for the three considered values of h = h2/h1, the Reynolds
numbers Re and Res as well as the dimensionless distances dy
and, in wall units, dy+ = Resdy/(1 + h), of the collocation point the
nearest from the wall. For the three different values of h one ob-
serves that dy+ = O(1), so that a ‘‘near wall modeling’’ approach is
not mandatory.
y

x = 8

y

x = 64

)

d)

3 (dotted line), h = 1 (dashed line) and h = 0.7 (solid line), at different abscissa: (a)
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Since a spectral method is used, we can also check if the SVV
stabilized flow is well resolved by our discretization. For the inter-
mediate value h = 1, Fig. 2 shows the spectra of the instantaneous
streamwise velocity at time t = 400, as computed along the x-
streamwise, y-crossflow and z-spanwise axis issued from the
points (23.58, 0, 0) and (51.58, 0, 0). In the y-direction, one has
the absolute values of the coefficients ûk such that uðx; y; zÞ
¼
P

kûkðx; zÞTk � f�1ðyÞ, where Tk is the Chebyshev polynomial of
degree k and f the y-mapping from the reference to the physical do-
main, i.e. such that f:[�1, 1] ? [�(1 + h), 1 + h]. In x-direction, the
definition is similar except that one considers only the subdomain
that contains the point under consideration. In z-direction, it is the
modulus of the Fourier spectrum which is visualized. As expected
one observes an exponentially fast decay of the spectra, which
means that the SVV stabilized Navier–Stokes equations are well
resolved by the discretization. Similar results may be obtained
at other test-points or for the transverse components of the
velocity.

Since periodicity is assumed in the spanwise direction, it should
be checked that the width E = 8 of the computational domain has
been chosen sufficiently large. Two point-correlations of the
transverse velocity components have been computed to this end.
Table 2 shows, e.g. for the crossflow velocity, the ratio hv(x, y, z)
v(x, y, z + l)i/hv(x, y, z)2i, at the two points (23.58, 0, 0) and
(51.58, 0, 0) for several values of l. Under the usual hypothesis of
ergodicity, the statiscal means have been estimated by integration
in time, in practice over the dimensionless time interval (200, 400).
These results have been obtained for the intermediate value h = 1.
Despite the fact that the integration interval is relatively small one
clearly observes a strong decrease of the considered two-point
correlations.
h = 3

h = 0.7

h = 1

u m
 (

x,
0)
3.2. Instantaneous flow field

We show in Fig. 3a–c the instantaneous modulus of the vorticity
jxj in the (x, y) plane z = 0 at time t = tf = 400 for the different con-
finement configurations (h = 3, h = 1 and h = 0.7). One observes that
the position of the turbulent front depends on the confinement
parameter, since it is located more upstream when the confine-
ment is strengthened. While for h = 1 and h = 0.7 the flow seems
to be fully 3D turbulent, for h = 3 the turbulence seems to be char-
acterized by a peculiar two-/three-dimensional behaviour. This
hypothesis is confirmed by Fig. 3d–f, where we show the instanta-
neous modulus of the vorticity in the (x, z) plane y = 0 at the same
time t = 400. Looking at Fig. 3d it is clear that in the first part of the
domain, i.e. for x [ 45, the effect of the third dimension is negligi-
ble, which supports the conjecture of a two-dimensional
turbulence in the considered region. Furthermore, in Fig. 3a the
structures around the vortices upstream of the turbulent front
suggest a direct cascade of enstrophy, which is characteristic of
two-dimensional turbulence. Such structures are not detected for
stronger confinements.

One may then think that confinement promotes a fully 3D tur-
bulence. This hypothesis has however to be confirmed by a more
detailed analysis.
RECIRCULATION ZONE

x

Fig. 8. Mean streamwise velocity um(x, 0) versus the streamwise x-direction for
h = 3 (dotted line), h = 1 (dashed line) and h = 0.7 (solid line). A recirculation region
is only present for h = 0.7 and h = 1.
3.3. Strouhal number

The Fourier analysis of temporal data at some measurement
points allows the determination of the Strouhal number, in order
to estimate the influence of the confinement on the dominant fre-
quency. Let us remember first that for the wake of a cylinder the
influence of confinement on the shedding frequency has already
been investigated. Particularly, in experiments with a confined cir-
cular cylinder at Reynolds number such that 104 < Re < 107, it is
found that the Strouhal number increases when enforcing the con-
finement until h = 1 [30]. A similar tendency was found by Kim
et al. [15], who compared h = 4 and h =1 results for LES of con-
fined turbulent wakes past a square cylinder at Re = 3000. How-
ever, cylinder wakes are quite different from the obstacle-free
wakes considered in our simulations, for which, up to our knowl-
edge, no previous experiments or numerical simulations in the tur-
bulent regime have been carried out. Moreover, as discussed later,
the usual choice of the relevant reference quantities differs for
these two different kinds of wake flows.

We show in Fig. 4 spectra of the velocity crossflow component v
at x = 12.25, y = 0 for the examined confinements. The dimension-
less frequency f is based on the reference value Um/h1. Since the
flow is homogeneous in the transverse direction, the spectra are
averaged over the z-points in order to improve the statistical sam-
ple. The main peak is damped when strengthening the confine-
ment and the corresponding Strouhal number, St, decreases as
the confinement is increased. Moreover, for h = 3 one observes a
large band frequency peak around f � 0.8 which may reflect a back-
scattering phenomenon, e.g. typical of transitional turbulent shear
flows, since at x = 12.25 the h = 3 flow is not yet fully developed,
see Fig. 3.

At first sight the dependence of the Strouhal number on the
confinement is opposite to the one observed for confined cylinder
wakes. For cylinder wakes, Re and St are however generally based
on the flowrate velocity U and the cylinder diameter 2h1, in con-
trast with our definition. To allow comparisons, the Reynolds and
Strouhal number rescaled by means of these reference scales are
named Rec and Stc, respectively. One obtains:
Rec

2Re
¼ 2St

Stc
¼ 1þKþ ð1�KÞh

1þ h
ð13Þ

Table 3 provides the values of Re, St, Rec and Stc for the three dif-
ferent confinements. We notice that the variations of St and Stc are
opposite, since Stc is decreasing with h, whereas St is increasing.
Despite the fact that Rec is decreased, so that one could imagine
a decrease of Stc, see e.g. Williamson [34] for the wake of a cylinder,
the increase of confinement induces a growth of Stc similar to cyl-
inder wakes [30,15]. This tendency on Stc was already encountered
by Biancofiore [3] for Re = 100, for the same value of the velocity
ratio K = �0.739.



34 L. Biancofiore et al. / Computers & Fluids 58 (2012) 27–44
3.4. Velocity spectra and structure function

One-dimensional velocity spectra, based on the Fourier analysis
of temporal data and obtained through the Taylor hypothesis,
allow a comparison with the Kolmogorov spectrum typical of
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Fig. 9. Turbulent kinetic energy k versus crossflow y-direction for h = 3 (dotted line), h =
x = 32 and (f) x = 64.
isotropic turbulent flows. In Fig. 5 one dimensional crossflow
velocity spectra are presented (in log–log setting). The measure-
ment point is located at x = 51.85, y = 0, i.e. beyond the 2D–3D
transition for all the examined confinements. The most confined
cases, i.e. h = 1 and h = 0.7, present a classical inertial subrange,
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1 (dashed line) and h = 0.7 (solid line), at (a) x = 2.04, (b) x = 4, (c) x = 8, (d) x = 16, (e)
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where the Kolmogorov direct energy cascade takes place which is
typical of a fully 3D turbulent flow. In the inertial subrange, the
slopes of the spectra fit satisfactorily with the expected �5/3 value.
Towards small scales, both curves show a subgrid regime analo-
gous to the dissipative regime, predicted by Kolmogorov’s hypoth-
esis, see e.g. Pope [27]. In contrast to this behaviour, the spectrum
of the less confined case, i.e. h = 3, presents two different tenden-
cies in the inertial subrange, which is a reminiscence of the spectra
of a two-dimensional turbulent flow [18]. In the large scale range,
the spectrum has a slope close to �5/3, which means that a cascade
of energy with a constant flux takes place. For smaller scales, the
slope of the spectrum rather approximates the value �3, see e.g.
Kraichnan [16,17]. Following Kraichnan and Montgomery [18], this
behaviour of the spectrum is typical of an inverse cascade of ens-
trophy, further hint of the 2D nature of the turbulence for h = 3.

In order to confirm this hypothesis, one can compute the third
order-velocity structure function of the velocity S3(l) = h[(u(x +
l, t) � u(x, t)) � l/jlj]3i, which can distinguish between 2D and 3D
turbulent flows [2]. In streamwise direction, by means of Taylor’s
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Fig. 10. Turbulent kinetic energy k versus streamwise x-direction for h = 3 (dotted line), h = 1 (dashed line) and h = 0.7 (solid line), at (a) y = 0, (b) y = 1.04, (c) y = 1.34 and (d)
y = 1.52.
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hypothesis the third order structure function may be computed as
a function of the time shift Dt, S3(Dt) = h[u(x, t + Dt) � u(x, t)]3i, at
the same point (x = 51.85 and y = 0) and still averaging over the
z-points. In an homogeneous and isotropic turbulent flow, the sign
of the third order-velocity structure function can determine the
direction of the energy cascade. If it is negative, there is a transfer
of turbulent kinetic energy from the large scales towards the small
scales, sign of a fully 3D turbulence. Otherwise, if it is positive the
energy is transferred from the small scales towards the large ones,
peculiar to a two-dimensional turbulent flow. Both inverse and di-
rect cascade of energy have a slope of S3(Dt) equal to 1 [2]. For 2D
turbulence, in Bernard [2] it is also shown that in the range, where
the direct enstrophy cascade takes place, the third order-velocity
structure function S3(Dt) is still positive and its slope (in log-scale)
fits 3. This behaviour was confirmed by Lindborg [19] in atmo-
spheric turbulence and recently by Boffetta and Musacchio [6]
for forced 2D Navier–Stokes equations. Furthermore, in the subgrid
regime the behaviour of jS3j approximates the theoretical slope of 3
for both 2D- and 3D-turbulence Bernard [2].

In Fig. 6, the behaviour of the absolute value jS3(Dt)j is reported
for the three confinement configurations. Continuous lines mean
negative values of S3, while dashed lines mean positive ones. The
slopes of 1 and 3 are depicted by continuous and dashed lines,
respectively. One can note that for h = 1 and h = 0.7 the third order
structure function is still negative, according to the hypothesis of a
fully 3D turbulent flow, while for h = 3, a region for which S3 is po-
sitive is encountered. Considering that our turbulent wakes do not
respect the conditions of homogeneity and isotropy, we can con-
clude that the theoretical slopes are well recovered by the varia-
tions of S3. In particular, while in the subgrid ranges the three
configurations have a similar slope of 3, in the inertial range the
behaviours differ. The fully 3D turbulent cases present a clear slope
of 1, which represents the energy cascade, while for h = 3, the slope
of S3 is close to 3, sign of an enstrophy cascade. However, for h = 3
the presence of a range with positive values of S3(Dt) confirms the
hypothesis of 2D turbulence. Furthermore, if one associates f to 1/
Dt, the positive range of the third order-velocity structure function
corresponds roughly to the inertial subrange, where the direct cas-
cade of enstrophy takes place, see Fig. 5. Thus, the behaviours of
both the spectra and the third order-velocity structure function
suggest that a stronger confinement favors the formation of fully
3D turbulent flow.

3.5. Mean flow and turbulence statistics

In this section statistical quantities characteristic of turbulence
are analyzed. These quantities are averaged in time but also over
the periodic spanwise direction, except for the dissipation rates
which are computed in the plane z = 0.

3.5.1. Mean flow profiles
Fig. 7 presents profiles of the streamwise component of the

mean flow velocity um(x, y) at (a) x = 4, (b) x = 8, (c) x = 16, and
(d) x = 64. From now, the dotted line depicts h = 3, the dashed
one h = 1 and the continuous one h = 0.7. For x = 64, i.e. close to
the computational domain outlet, the profiles are close to a ‘‘plug
flow’’, especially for the strongest confinements. Asymptotically,
each of the three flows will of course reach a fully developed state
of turbulent channel flow.

Although the inlet profiles are co-flow wakes, for h = 1 the
velocity is negative at the centerline, see Fig. 7b. In order to mea-
sure the length of the recirculation region and to reveal its exis-
tence for other confinements, Fig. 8 provides the mean
streamwise velocity um(x, 0) along the centerline. One notes that
the weakest analyzed confinement h = 3 presents no recirculation
zone, in contrast to h = 1 and h = 0.7. Moreover, the largest recircu-
lation region is obtained for h = 0.7. Thus, the confinement pro-
motes the formation of a mean recirculation bubble in the
domain. This phenomenon is discussed in Biancofiore et al. [5]
and our explanation is based on an asymmetric diffusion of the
shear layer in the outer and inner wake regions. One may think
that such an explanation could still hold by substituting a turbu-
lent viscosity effect to the molecular viscosity effect.

3.5.2. Turbulent kinetic energy
The behaviour of the turbulent front observed in Fig. 3 may be

interpreted as a destabilizing effect due to confinement. In order to
confirm this intuition, the turbulent kinetic energy profiles should
be analyzed. Fig. 9 illustrates the behaviour of the turbulent kinetic
energy k as a function of the crossflow direction at six different
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abscissa, from x = 2.06 to x = 64. Note that the scale is changed be-
tween the different figures. Although not fully converged, as
pointed out by the oscillations of the curves, such profiles allow
a good evaluation of the variations of k. The symmetries that can
be observed in Fig. 9a–c simply result from the fact that no pertur-
bations are added to the inlet flow.

Close to the inlet, see Fig. 9a and b, the turbulent kinetic energy
is larger than it is downstream and the maxima around y = ±1 have
similar values independently of the confinement. Instead, for x = 8
(Fig. 9c), the highest peaks are those of strongest confinements, a
further hint of a growth of the turbulence intensity associated to
an increasing confinement. However, downstream the most con-
fined flows loose a large part of their kinetic energy, see Fig. 9e-f.
Thus, in the final part of the domain the turbulent character is
higher for h = 3, as already noticed in the snapshots of Fig. 3 or in
the spectra of Fig. 5.

Same conclusions can be drawn when analyzing Fig. 10, which
illustrates the behaviour of the turbulent kinetic energy k along the
streamwise direction, for (a) y = 0, (b) y = 1.04, (c) y = 1.34, and (d)
y = 1.52. At y = 0, see Fig. 10a, the case with h = 3 presents the high-
est turbulent kinetic energy, but k at the centerline is negligible
compared to its values closer to the boundaries. For y = 1.34 and
Fig. 13. Instantaneous modulus of the vorticity jxj in the central planes z = 0 (top) an
y = 1.52, the configurations with the strongest confinement present
the highest maxima, which means that the confinement enhances
the turbulent character of the flow. This destabilizing influence is
however only noticed close to the entry. Note that for h = 0.7, we
have y 6 1.7, so that the corresponding profile at y = 1.52 is not
strongly affected by the boundary layer.

Downstream the least confined case presents the highest level
of turbulence intensity. One may think that the boundary layers
dissipate rapidly the turbulent kinetic energy, so that the least con-
fined wake flow is the most turbulent in the final part of the do-
main. One may also conjecture that (i) once the turbulent wake
flow has become similar to a standard turbulent channel flow,
the velocity fluctuations are much less important and (ii) that this
occurs farther downstream for the least confined flow. Finally, it is
clear that the mean flow velocity and the width of the channel in-
crease with h, so that a Reynolds number based on these quantities
is higher for the least confined flow, see Table 1.

3.5.3. Dissipation rate
By means of Eq. (20), one can estimate the dissipation rate e of

the turbulent kinetic energy in order to study the connection of
this quantity with the confinement. Fig. 11 shows the behaviour
d y = 0 (bottom) at t = 400 for FS-flows: (a, d) h = 3, (b, e) h = 1 and (c, f) h = 0.7.



0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

x

R
e⋅

ε

NO SLIP

FREE SLIP

Fig. 15. Dissipation rate of turbulent kinetic energy e times Re versus streamwise x-
direction y = z = 0 for h = 1. The continuous line depicts NS conditions and the
dashed one FS conditions.

38 L. Biancofiore et al. / Computers & Fluids 58 (2012) 27–44
of Re e along the centerline y = z = 0. One observes that the maxi-
mum of dissipation rate e is enhanced when the confinement is in-
creased. Another effect should be noticed: while for the two
strongest confinements a large part of the dissipation occurs close
to the inlet, for h = 3 the dissipation persists along the domain. One
may think that the explanations provided for the turbulent kinetic
energy also hold for the dissipation rates.

By means of the dissipation rate e, one can try to provide some
additional a posteriori justifications to our LES calculations. In par-
ticular, we can estimate the Kolmogorov scale gK = Re�3/4 e1/4. It is
also possible to provide the ratio between the dissipation rate em,
only associated to the dimensionless viscosity (Re�1), to the dissi-
pation rate e, which takes into account both the physical and sub-
grid dissipation terms, see the Appendix for details. Fig. 12 shows
these quantities along the centerline y = z = 0. The most turbulent
configurations, i.e. h = 0.7 and h = 1, present a minimal Kolmogorov
scale gK � 4 � 10�3 for x � 12, while for h = 3 the minimum is
gK � 7 � 10�3 for x � 60, see Fig. 12a. Such estimates confirm that
LES was required, since the average grid sizes along the streamwise
direction that correspond to the minima are Dx = 0.085 and
Dx = 0.011 for h = {0.7,1} and h = 3, respectively. Similar conclu-
sions can be drawn when observing the behaviour of the ratio em/
e along the x-direction. The minima are em/e � 0.18 and em/
e � 0.21 for h = {0.7,1} and h = 3, respectively. These estimates
show that our LES do not simply rely on the subgrid dissipation
and so give some confidence in the numerical results. They agree
with those generally encountered in SVV–LES of turbulent flows
at comparable Reynolds numbers [25].

4. Confined turbulent wakes with free slip conditions at the
walls

The formation of boundary layers due to the NS conditions is
one of the main physical mechanisms that could explain the
enhancement of the turbulent character of the flow as the confine-
ment is increased. In the presence of confinement, the boundary
layers start to interact with the shear layers located around
y = ±1. In this section, we therefore analyze a FS condition at the
wall, in order to study the direct influence of confinement on the
turbulent wakes.
x

k

y = 1.34
(a) (

Fig. 14. Turbulent kinetic energy for the FS-flows with respect to streamwise direction x
(solid line).
For the three different values of the confinement parameter
(h = 3, h = 1 and h = 0.7), Fig. 13 illustrates the instantaneous mod-
ulus jxj of vorticity at time t = 400 in the (x, y) plane z = 0 (a–c) and
(x, z) plane y = 0 (d–f). Comparing with NS-flows, see Fig. 3, we can
note that for each configuration the NS conditions enhance the 3D
character of the turbulence. Thus, for h = 1 the turbulent front is
moved downstream and for the weakest confinement, h = 3, no
clear turbulent front is detected and the flow seems to be 2D lam-
inar or only characterized by two-dimensional turbulence. How-
ever, even without boundary layer the confinement clearly
promotes a fully three-dimensional turbulence. The analyzes of
the one-dimensional velocity spectra and of the third-order struc-
ture function are carried out for h = 3 in Section 5.

Fig. 14 shows the behaviour of the turbulent kinetic energy in
the streamwise direction at (a) y = 1.34 and (b) y = 1.52 for FS-
flows. The growth of the turbulent kinetic energy with respect to
confinement is also clear in that case.
x

y = 1.52b)

at (a) y = 1.34 and (b) y = 1.52, for h = 3 (dotted line), h = 1 (dashed line) and h = 0.7



L. Biancofiore et al. / Computers & Fluids 58 (2012) 27–44 39
In Fig. 15 we compare the dissipation rates e, as computed with
Eq. (20), of FS- and NS-flows for the confinement parameter h = 1.
Clearly, the dissipation is stronger with NS conditions than with FS
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Fig. 16. (a, c, e) One-dimensional velocity spectra and (b, d, f) absolute value of the third
h = 0.7. The two quantities are measured at two different abscissa x = 23.58, and x = 51.58
and dash-and-dot lines represent the slopes �5/3 and �3, respectively. In (b, d, f) continu
and-dot and dotted lines represent the slopes of 1 and 3, respectively.
conditions. The comparison between FS- and NS-flows suggests the
role of the boundary layers at the walls. The presence of boundary
layers enhances the 3D turbulent nature of the flows (see Section 5
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for a detailed analysis on this aspect) and, subsequently, their
interactions with the shear layers still increase the development
of the turbulence. However, the role of the boundary layers cannot
explain alone the growth of the turbulent kinetic energy due to the
confinement, since for FS-flows the turbulent character of the
wakes is also enhanced by confinement. Biancofiore [3] noticed
in contrast that for lower Reynolds number, i.e. Re = 100 and
Re = 500, NS conditions were stabilizing by lowering the critical
co-flow parameter required for onset of instability. When bound-
ary layers develop, a significant difference is hence noticed be-
tween laminar and turbulent wake flows.
5. 2D versus 3D turbulence

In this section a comparison for both boundary conditions be-
tween the 2D/3D character of the turbulence is illustrated by
means of two different analyzes: the third-order velocity structure
function (Section 5.1) and the Lumley’s diagram (Section 5.2).
5.1. Third-order velocity structure function

In Fig. 16a–e we illustrate the behaviour of the velocity spectra
and in Fig. 16b–f the absolute value of the third order structure
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Fig. 17. Sketch of anisotropy tensor in the Lumley triangle for h = 3 and (a
function for both NS- and FS-flows. This is done at two different
abscissa, x = 23.58 and x = 51.58, and for the three different con-
finements (a, b) h = 3, (c, d) h = 1 and (e, f) h = 0.7.

For h = 3 (Fig. 16a and b) and x = 23.58, i.e. close to the inlet, the
spectra and the structure functions of the NS- and FS-flows are very
similar, sign that the effect of boundary layers is not yet relevant. In
particular, only the largest scales are characterized by a positive
third order-velocity structure function. Moreover, the spectra do
not show a direct cascade of enstrophy. Also at medium scales it
seems that a dissipative subrange is already present and thus, that
the effect of viscosity is not negligible, which is peculiar to laminar
flows. However, at x = 51.58 the NS-flow shows both a two- and
three-dimensional turbulent character, as already described in Sec-
tion 3.4, while for the FS-flow the laminar nature seems to persist.

For h = 1 (Fig. 16c and d), at both abscissa the flows present a
fully 3D turbulent nature. However, for FS-flows and close to the
inlet, an enstrophy cascade occurs, sign of a two-dimensional tur-
bulence. This fact is confirmed also by the positive range of the
third order structure function, see Fig. 16d. The 2D turbulent char-
acter is lost downwards, as illustrated by the spectrum and the
structure function at x = 51.58. In this case, the spectrum only pre-
sents a direct energy cascade (slope �5/3) and the structure func-
tion is always negative. However, because the flows are far from
the conditions of isotropy and homogeneity, a perfect agreement
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of the curves of S3(Dt) in the inertial subrange with the slope of 1
cannot be expected, especially for cases, where a change of sign
occurs.

Same results are shown for h = 0.7 in Fig. 16e and f. In this case,
for both NS- and FS-flows and both abscissa, the turbulence is only
characterized by 3D features. No cascade of enstrophy is detected
and moreover S3 is always negative.

In conclusion, the interaction between the wake and the vortic-
ity created at the boundaries seems to have a relevant role in the
formation of turbulence, both in 2D and 3D regimes. Thus, in the
first part of the channel the FS- and NS-flows have a similar lami-
nar behaviour for h = 3, but when the boundary layers start to
interact with the wake, 2D and 3D turbulent features are only de-
tected for NS-flows.

Another way to investigate the 2D/ 3D nature of turbulence is
provided by Lumley diagrams, which are based on a fine analysis
of the Reynolds stress tensor, see Section 5.2.
5.2. Lumley’s diagrams

In order to analyze the anisotropy features of the turbulence for
the examined wakes, we provide in Figs. 17–19 Lumley’s diagrams
[20] for h = 3, h = 1 and h = 0.7 respectively. Each diagram
η
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Fig. 18. Sketch of anisotropy tensor in the Lumley triangle for h = 1 and (a
corresponds to a given streamwise x-value and each point to a y-
crossflow value (averaging is done both in time and in z-direction).
For all the three figures, (a) and (b) illustrate Lumley’s diagrams at
x = 23.58 and x = 51.58 with NS conditions, while (c) and (d) show
such diagrams at the same abscissa but with FS conditions. The
anisotropy tensor is defined as the deviatoric part of the Reynolds
stress tensor normalized by its trace, i.e. by the double of the tur-
bulent kinetic energy. One observes that for each configuration, the
points associated to the non null invariants (n, g) of the anisotropy
tensor remain within the region delimited by the three solid lines.
This points out that our LES results respect the realizability dia-
gram of Lumley [20,27].

In Fig. 17a, c, and d, the presence of (n, g) points on the upper
side of the ‘‘triangle’’ means a two-component anisotropy. In par-
ticular, in figures c and d, all samples collapse on the upper side
of the triangle. This behaviour of the invariants agrees with the re-
sults obtained in Section 5.1 which have pointed out the presence
of two-dimensional laminar/ turbulent structures for these config-
urations. In absence of boundary layers (figures c and d) the three-
dimensional character completely disappears. Conversely, a large
part of the two-dimensional behaviour is lost for x = 51.58, see
Fig. 17b. Same results were obtained by analyzing the spectra
and structure functions in Fig. 16a and b.
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Fig. 19. Sketch of anisotropy tensor in the Lumley triangle for h = 0.7 and (a) NS, x = 23.58, (b) NS, x = 51.58, (c) FS, x = 23.58 and (d) FS, x = 51.58.

42 L. Biancofiore et al. / Computers & Fluids 58 (2012) 27–44
In Fig. 18a, the distribution of the (n, g) points reminds a turbu-
lent mixing layer, since in the bulk of such flow the Reynolds stres-
ses are close to axisymmetric with positive n, while at its edges
they are still axisymmetric but with negative n. This points out
the dominance of the shear layers of the wakes in this region. Fur-
thermore, the accumulation of points at the (n = g = 0) vertex indi-
cates a tendency towards an isotropic turbulence. Downwards, see
Fig. 18b, the (n, g) point distribution is very similar to a turbulent
channel flow, sign of the disappearance of the shear layers in the
final part of the domain, see Fig. 7d. For FS conditions, the config-
uration is less obvious. However, at both abscissa the turbulence
seems to be axisymmetric anisotropic, with positive/negative n
depending on the distance of the considered point to the shear
layers.

Finally, Fig. 19 shows that for NS flows the behaviour of the
invariants for h = 0.7 is similar to the one obtained with h = 1. For
FS flows, the configurations differ. The turbulence remains how-
ever axisymmetric but now rather characterized by negative n.

6. Conclusions and perspectives

In order to better understand the physical mechanism which
takes place in the recessed injectors of rockets engines, we have
carried out an academical study on the spatio-temporal develop-
ment of 3D confined wakes. By means of high order LES based on
a SVV technique (SVV–LES Chebyshev–Fourier spectral code) we
have studied the influence of confinement on turbulent obstacle-
free wakes. Considering several quantities like one-dimensional
spectra, third-order velocity structure function, turbulent kinetic
energy and dissipation rate, we have shown that confinement en-
hances the turbulent character of the flow. This is especially
pointed out by the increase of turbulent kinetic energy and dissipa-
tion rate when the confinement is increased.

Comparing FS- and NS-flows, we have noticed that the presence
of boundary layers increases the intensity of the turbulence and
consequently the dissipation rate. This is an opposite effect to
the one observed for laminar flows, since in this case the use of
NS conditions is stabilizing [3]. Also, the influence of the confine-
ment on the Strouhal number was examined in the turbulent re-
gime, pointing out a difference of behaviour with respect to
confined laminar wakes.

Depending on the confinement parameter, the turbulence has
shown either 3D features or 2D ones. This dependence has been
analyzed by looking both at the third order-velocity structure func-
tion and Lumley diagrams, with consistent results: For weak con-
finement the flow combines 2D/ 3D features, whereas for
stronger confinements the turbulence is essentially 3D. This is en-
forced with NS rather than FS boundary conditions.

Although the confinement seems to favor the formation of a
fully-developed 3D turbulence, especially when no-slip boundary
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conditions are involved, it would be of interest to study the role of
the confinement for fully 2D flows, thus excluding artificially the
transition to 3D flows. It is indeed not clear if our conclusions ob-
tained for 3D flows also hold for 2D ones. The results of the present
paper have been obtained in a channel like geometry. It would be
interesting to understand if the confinement has the same influ-
ence on turbulent wakes also in an axisymmetric geometry, closer
to a real coaxial injector. Furthermore, additional numerical or
experimental studies devoted to confined laminar/ turbulent
obstacle-free wakes could be conducted, in order to unveil the role
of confinement on the appearance of laminar instability and 3D
coherent structures, the transition to turbulence and its intensity.

Acknowledgements

For the numerical simulations carried out in this paper, we have
used the support of the Institut du Développement et des Ressources
en Informatique Scientifique (IDRIS) as a part of the project ’’Etude et
contrôle de phénomènes tourbillonaires’’ (references i2009024055
and i2010024055), as well as the Mésocentre SIGAMM of the
Observatory of Côte Azur as a part of the project ’’Instabilités de sil-
lages’’. Stefano Musacchio (LJAD) and Eric Serre (M2P2, Marseille)
are warmly acknowledged for stimulating discussions. The authors
thank Jean-Marc Lacroix for his kindness and technical support.

Appendix A. Dissipation rates of the turbulent kinetic energy

We proceed as in Pasquetti [25], i.e. we compute the mean dis-
sipation rate of the turbulent kinetic energy as, e.g. described in
Pope [27], except that we start from the SVV-stabilized incom-
pressible Navier–Stokes equations:

@t �ui þ �uj@j�ui ¼ �@i�pþ m@j
~@j�ui; ð14Þ

@j�uj ¼ 0; ð15Þ

where summation over repeated indices is assumed, with ~@j as de-
fined in Eq. (10) and, where �ui and �p stand for the SVV–LES approx-
imations of the i-component of the velocity and of the pressure
divided by the density, respectively. The over-bar is a classical LES
notation to express the fact that at the end we will only compute
some filtered quantities, even if we have not followed the usual
LES methodology, based on the filtered Navier–Stokes equations.

In order to obtain an equation for the specific kinetic energy of
the filtered velocity, ef ¼ �ui�ui=2, we multiply Eq. (14) by �u and
introduce the tensor eSij ¼ ð ~@j�ui þ ~@ i�ujÞ=2 which is associated to
the work of the viscous and sub-grid forces

Dtef þ @jð�uj�p� 2m�ui
eSijÞ ¼ ��; ð16Þ

with Dt ¼ @t þ �uj@j and, where appears the dissipation term

� ¼ mð@j�ui
~@j�ui þ @jð�ui

~@i�ujÞÞ: ð17Þ

Assuming that @j and ~@j commute, with the continuity equation
and thanks to the symmetry of the eSij, one obtains:

� ¼ 2mSij
eSij: ð18Þ

Without SVV stabilization, thus, ~@j � @j and eSij ¼ Sij, we recover
the usual form of the dissipation term. However, it should be noted
that SijSij P 0, whereas �, from Eq. (18), may be negative, giving
then the possibility of a local transfer of energy from the non-re-
solved to the resolved scales. Such a backscatter like phenomenon
may however be more numerical than physical, see e.g. the SGS
Cholet and Lesieur [7] model for a more physical approach. The
SVV stabilization however allows such a backscatter phenomenon,
whereas some SGS models, e.g. the standard Smagorinsky model,
forbid it.
From Eq. (18), it is possible to compute the dissipation rate of
the turbulent kinetic energy. Hence, denoting with h�i a statistical
mean

h�i ¼ 2mhSijiheSiji þ e; ð19Þ

where the first term in the right hand side is the dissipation due to
the mean flow and e the dissipation rate of the turbulent kinetic
energy:

e ¼ 2mðhSij
eSiji � hSijiheSijiÞ: ð20Þ

Of course, with eSij � Sij one recovers the standard formulation of
e, i.e. only based on the viscous dissipation. The validity of this ap-
proach was especially tested for the stratified wake of a cylinder
[25].
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